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Abstract

The SLICE textured-image segmentation system identifies image regions that
differ in gray-level distribution, color, spatial texture, or other local property.
It has been developed for the analysis of aerial imagery, although it can be
used for any domain in which homogeneous image regions must be found prior
to interpretation or enhancement. This report concentrates on textured-image
segmentation using local texture-energy measures and user-delimited training
regions.

The SLICE algorithm combines knowledge of target textures or signatures
with knowledge of background textures by using histogram-similarity trans-
forms. Regions of high similarity to a target texture and of low similarity to
any negative examples are identified and then mapped back to the original im-
age. This use of texture-similarity transforms during the segmentation process
improves segmenter performance and focuses segmentation activity on material
types of greatest interest. The system can also be used for goal-independent
texture segmentation by omitting the similarity-transform computations, and
its hierarchieal, recursive segmentation strategy integrates very well with other
image-analysis techniques.
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1. Introduction

This paper presents a new goal-directed method of textured-image segmentation. The
SLICE segmentation algorithm is one component of a proposed knowledge-based image
feature-extraction system. The algorithm is currently implemented in the SLICE program,
a region-based recursive segmentation system running on the DARPA/DMA Image Under-
standing Testbed at SRI International. The SLICE program is capable of goal-independent
segmentation and other image manipulations in addition to the texture segmentation dis-
cussed in this paper.

Aerial images are very difficult to segment into meaningful regions, despite the fact
that humans seem to do this effortlessly. Attempts to develop segmentation algorithms
using only monochrome input data have had little success. Segmentation using color and
infrared data has worked somewhat better, but such data is often unavailable. This report
describes techniques for using the spatial textures in monochrome imagery in much the
same way that color has previously been used.

Image textures arise from many physical sources. Cellular textures are composed of
repeated similar elements, such as leaves on a tree or bricks in a wall; other texture
types include flow patterns, fiber masses, and stress cracks. A complete analysis of any
texture would require rnodeling of the underlying physical structures and processes. In
most applications, texture recognition is more important than knowledge of the generating
mechanism. The algorithm presented in this report can be used for texture recognition and
material identification when we have knowledge of scene texture types, and for locating
and characterizing textured regions even when we have no such knowledge.

The SLICE algorithm consists of three parts: goal-directed texture transformation,
multiple histogram-based threshold segmentations, and spatial analysis of the proposed
segmentations in order to choose the best one. These steps may be repeated on the newly
found regions to further segment them. A high-level control system could be used to
focus the segmenter’s “attention” on important image regions and can determine when
to stop partitioning a given region (using size, shape, homogeneity, semantic, or priority
considerations). Regions found by other image-analysis techniques can also be combined
with those found by the SLICE algorithm.

This report describes the SLICE algorithm and the rationale for each part of the tech-
nique. Section 2 introduces some definitions used throughout the report. Section 3 briefly
describes the basic texture transforms used to measure local spatial variation around a
pixel. Section 4 discusses maximum likelihood classification methods, and points out why
they are not optimal for texture segmentation. Section 5 presents similarity transforms
that can be used to locate desired texture signatures in an image. Sections 6 and 7
describe the integration of texture similarity transforms with histogram-based segmenta-
tion to produce goal-directed segmentation using multiple texture bands. Section & then



-presents examples of the technique, and Section 9 summarizes the characteristics of this
approach. Details of the modified PHOENIX goal-independent color-image segmentation
technique used in the current SLICE program are presented in Appendices A and B.

2. Background

An image is a two-dimensional array of pixels, where pixels are numbers {usually
integers in the range O to 255) or vectors of numbers representing information about
an imaged scene. An image of vector-valued pixels may be thought of as a set of two-
dimensional, scalar-valued layers called data bands. (Indeed, the pixel data is usually
stored in this layered fashjon.)

Pixel values typically represent intensity of light (infrared, visible, or ultraviolet) or
other electromagnetic energy reaching a sensor from a point in the imaged scene, but
may correspond to other measurable scene properties. Data bands may also record such
computed information as stereo disparity, intensity gradients, filter responses, estimated
scene albedo, or inferred surface slope. In this paper we shall be particularly concerned
with texture bands computed from local texture properties around each pixel.

The integer values that can be assumed by a scalar pixel are called gray levels. Even
nonphysical data values such as texture statistics are representable as gray levels or in-
tensities, since the data bands may be displayed on an image monitor as black-and-white
luminance images. A special type of data band, called a map, stores at each pixel an
integer value representing the material type or other nominal category assigned to that
pixel. A segmentation map or region map has a unique integer assigned to all pixels in an
image region and different integers assigned to different regions. Segmentation maps are
often displayed using pseudocolor {i.e., arbitrary assigned region colors), since display as
a luminance image is not meaningful.

The value of a pixel is easily read out of the array; all other information about the
imaged scene is implicit. It is the task of low-level image processing to make useful spectral
or spatial information explicit so that high-level feature-extraction operators and reasoning
processes can utilize it. This paper will describe a goal-directed method for extracting
homogeneous image regions satisfying prespecified criteria as to size, location, gray-level
distribution, and texture.

3. Texture Transforms

Textures can be recognized if one or more distinctive properties can be measured.!
Many ways of computing texture descriptors have been proposed. Some of the most pow-
erful descriptors, both individually and in combination, are the tezrture-energy measures
[Laws 80| and their variants [Pietikdinen 82, Harwood 83]. The transforms require only
simple convolution and moving-window updating techniques; moreover they can be made
invariant to changes in image illumination, contrast, and orientation without histogram
equalization or other preprocessing operations.

Texture energy is the amount of variation within a filtered window around a pixel.
A particular texture-energy measure thus depends on the spatial filter, the window size,
and the method of measuring average variation within the window. These measures do

'There are also structural or “syntactic” pattern-recognition methods that do not require texture metrics.
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Figure 1: Orthogonal 3 x 3 Texture Masks

not describe texture-generating mechanisms or parameters directly, but do tend to be
constant across any perceptually homogeneous texture region and distinct for distinct
textures. (Within macrotextures having large elements they tend to be multimodal with
histogram peaks corresponding to the edges and interiors of the texture elements.)

The first step is to filter the original scalar image with a small convolution mask. The
mask is typically a binomially weighted array (defined below) that enhances image spots,
edges, or high-frequency components. Binomially weighted masks are both separable and
decomposable into smaller convolution masks, making them easy to implement efficiently
on a variety of architectures. The set of filter masks used determines the spatial frequencies
or texture structures that the transforms will measure.

The 3 X 3 binomially weighted masks are shown in Figure 1. They were constructed
by convolving the vectors { 1 2 1}, -1 0 1], and [ -1 2 - 1] with their
own transposes.? Larger masks may be constructed by convolving the 3 x 3 masks with
themselves. Binomially weighted filter masks of sizes 3 x 3, 5 x 5, and 7 X T were found to
be nearly equivalent in tests on a very limited class of textures [Laws 80]. For aerial image
analysis, the 3 x 3 masks seem likely to be the most useful, although strong patterns such
as orchards and crop rows may be better discriminated using larger masks.

An exponential series of mask sizes may be needed for multiresolution texture analysis.
Application of large binomial weighted masks (with coefficients in the billions) can be

2These vectors are themselves constructed from the vectors [ 1 1] and [ =1 1]. The mask names are
derived from the terms level, edge, and spot for the 3-vectora of sequency 0, 1, and 2. Similar names are
used for the 5-vectors and 5 x 5 masks, with the addition of W (wave) and R (ripple} for the vectors of
sequency 3 and 4.



‘very difficult even if done by repeated filtering with smaller masks. A better method
is to construct a pyramid of image reductions and then apply a single mask size to all
levels of the pyramid. The unfiltered image itself may be used as the highest-resolution
“filtered” band, and its local-energy statistics may be useful either as texture measures or
for normalizing the other texture measures when contrast invariance is desired.

The second texture-transformation step is to apply a local-energy operator to the fil-
tered image to produce a texture-energy data band. Texture energy at a point is just the
variance of the filtered-image values computed over a2 window around the point. Stan-
dard deviation, or the square root of the variance, has been found just as effective. For
zero-mean filtered bands, the standard deviation is usually approximated by an average
of the filtered-image magnitudes (i.e., absolute values) over a window. Such averages can
be computed by moving-window techniques that are very fast, even on general-purpose
digital computers.

An energy-gathering window of about about five or ten times the area of the filter
mask is recommended; larger sizes give better classification accuracy when applied to
large texture patches but lack the resolution needed for analysis of typical 512 x 512 aerial
image displays. The time required to compute the local energy is independent of the
window size, since each pixel is examined only once as it enters the window and once as it
leaves. (A fading-memory approximation to moving-window averaging can also be used to
permit single-pass computation of texture energy values without storing the intermediate
filtered image.) ,

Texture descriptors computed with the suggested masks are unaffected by most scene
illumination and sensor bias effects because all but the first mask produce zero-mean
outputs. Level-invariant texture energy bands may be normalized by the variance of
the unfiltered image if contrast-invariant texture measures are desired. Pairs of texture
energy values representing directional image structure can also be averaged if orientation-
invariant texture measures are desired. Decisions about when to normalize or average
are best left to a control system capable of reasoning about particular analysis tasks and
image contexts.

4. Maximum Likelihood: The Trouble with Optimal Discrimination

We now have a multiband image composed of luminance or spectral bands and derived
texture bands., We want a quick way to partition the vector-valued pixels into homoge-
neous groups, preferably using a priori knowledge of target signatures when it is available.
The texture transforms make it likely that each texture signature in the image will have
a fairly predictable Gaussian distribution in at least one data band. The temptation to
jump to multivariate Gaussian discriminant analysis is almost overwhelming.

There is a good reason for trying other methods, however, even when we have sufficient
multivariate training data to compute the needed means and variances (or covariance ma-
trices). Maximum-likelihood Gaussian discriminant analysis® is optimal for separating two
or more multivariate Gaussian distributions, but we do not have Gaussian distributions
as such—we have mixtures thereof. Even within a single data band we may have at best
one Gaussian and one mixture density to be discriminated.

®Le., multivariate minimum-distance classification using an inverse-covariance, or Mahalanobis, weighting.



This is not to say that the discriminant analysis won’t work, only that the conditions
for optimality are not satisfied. The procedure for computing diseriminant functions will
reduce positive and negative training instances to means and standard deviations, reject
any data bands in which the means and standard deviations are similar, and do the best
it can with a linear or perhaps quadratic function of the means and standard deviations
in the remaining bands. The result is that much of our knowledge about target signatures
in different data bands will be discarded.

As an example, consider a texture that is known to have a Gaussian distribution in
a particular data band. Assume that the scene might also contain instances of another
texture with a strongly bimodal salt-and-pepper distribution. These two distributions
should be easily distinguished, but they may not be discriminable by mean and standard
deviation alone. We could use multivariate statistics and compute covariances with data
values in other bands, but the resulting classifier might be unstable and difficult to train.
We could also seek a transform to another data band in which the two textures are
separable, but that will not work if there are other textures that might also be present in
the scene. Discriminant analysis is thus a poor way to deal with this situation.

There is also the matter of a priori probability. Any form of maximum-likelihood
classifier performs best if the decision thresholds are properly adjusted for the a priori
probability of that texture’s appearing in the scene. We may be able to guess reasonable
probabilities based on previous analyses of similar imagery, but biasing the analysis with
such values instead of just examining the evidence in the image is a suspect procedure.
Assigning equal likelihood to all possible scene entities is even more suspect.

We could live with these problems, but there are better ways of finding and distin-
guishing textures. These will be described in the remainder of this paper.

5. Similarity Transforms: Encoding Goals and Knowledge

The key to efficient goal-directed segmentation is to estimate quickly whether any given
pixel is part of the texture or target signature we are seeking. We have already computed
texture bands in order to collapse implicit information about a pixel’s neighborhood into
explicit information stored in the pixel’s data vector. We now need a scalar measure
of similarity (or, conversely, of dissimilarity) between a pixel data vector and a target
signature.

The simplest dissimilarity measure is the Euclidean distance between the image pixel
vector and a prototype vector representing a known texture type or previously extracted
region signature. We could invert this if we wanted a similarity measure. We could also
weight the component single-band distances differently if we had knowledge that some
data bands were more critical for recognition than others.

The easiest way to determine, or to “learn,” which data bands are important is to
keep track of the multivariate statistics within a target population and compare them
with the statistics for other possible scene entities. This leads to Mahalanobis distance
as a measure of dissimilarity between a pixel and a prototype. As discussed above, this
would be optimal for Gaussian distributions, since they are fully characterized by their
means and covariances.

It is not necessary to represent a texture prototype by statistical vectors and ma-
trices, nor is it necessary to specify complex parsing rules. An intermediate strategy



“is to represent a texture or target signature by its full histogram in each data band. (A
knowledge-based system would also have rules for manipulating these histograms in accor-
dance with overall image illumination and contrast; we shall assume here that any required
normalization has been done or will be compensated for during the image analysis.)

Storing histogram vectors as prototypes is very easy for a region-based system because
the region histograms are always readily available. To train the system one has only to
trace or extract a suitable region, assign it a label, and store it in the knowledge base.
The only complication is that different data bands may be used during different image
analyses, so that prototypes saved during one session may not include the bands needed
during another session. There would also be some difficulty if the same data band were
scaled or quantized differently for each session, but we can usually compensate for such
discrepancies.

Computing similarity between a pixel and a prototype is a bit more difficult than com-
puting Mahalanobis distance. We can split the problem into that of computing similarity
within a given band and that of combining different band similarities into a single overall
similarity measure, although such a two-step procedure is not necessarily optimal.

Consider then the problem of estimating how likely it 1s that an observed gray level
in a data band came from one prototypical population and not from another. We may
formalize and generalize this problem as follows. Given that we have observed a gray level
g as an independent random sample, what is the probability that the source population
was one of a set w of positive exemplar distributions, w;, and not from one of a set
¢ of negative exemplar distributions, ¢;?7 We shall assume that we know each of the
prototype distributions by a single histogram representing an unbiased sample from some
large population. We have, then, sets of histograms estimating Pr(g|w;) and Pr(g|¢;) and
we wish to compute Pr(w|g).

If we assume disjoint and exhaustive source populations, we can compute the probabil-
ity that the observed sample gray level g came from a positive exemplar source population
as the normalized sum of probabilities for the members of the set:

oty > Prwi|g)
Prlo) = S Br(enla) + 5, Pr(g19)

The denominator should sum to one, given our assumptions, but this formula will work
even if the probabilities are expressed relative to some larger set of disjoint source popu-
lations.

Bayes’ rule applied to each component term in the summations gives us

2 Pr(glwi) Pr{ws)
Pr{w|g) = N ,
W19 = Prlafn Prlun) + 5 Pr(oTd:) Pr(a)
where a term Pr{g) has been canceled from the numerator and denominator. This is

the theoretical form of the similarity function that we need. If we assume equal a priori
probability for each source population, the formula simplifies to

_ > Prglw;)
PI'(UJ|Q) - Ei Pr(_q‘w.,') + EJ' Pr(g‘qb.?)

Although the current SLICE program makes this simplification, additional knowledge of
the scene domain might provide a better set of weightings.




Now, how do we compute Pr(g|w;)? We could simply take the bin count for bin ¢
in the w; histogram and divide it by the total number of counts in the histogram. This
would have two undesirable effects: the estimated probability for adjacent bins could
vary wildly because of sampling fluctuations or “picket-fence”™ quantization effects, and
the similarity formula could not be evaluated for bins that happened to be empty in all
prototype histograms.

If the histograms were samples from Gaussian distributions, we could use the sample
mean and variance to estimate the true population bin probabilities for every gray level.
Since we generally have mixture densities, this approach would require that every proto-
type texture histogram be decomposed into component Gaussians. While this is difficult,
it could be done (at least approximately) either automatically or interactively at the time
a texture prototype is entered into the system’s knowledge base. We note that this is an
optimal solution, but will now proceed to develop a much simpler heuristic approximation.

If a distribution is known to be Gaussian, we achieve the greatest predictive power
by using techniques appropriate to that parametric form. If we have no knowledge of the
parametric form, we can still treat the histogram as a sample taken from a multinomial
distribution having unknown bin probabilities.

An observed bin probability, Pr(g|ws), is an unbiased estimate of the true bin proba-
bility in the sampled population. It is not, however, the best estimate of that generating
probability, given that a sample has been taken. An example may clarify this somewhat
difficult concept. Suppose that we have formed our prototype histogram by sampling a
single pixel. We shall then have a single populated bin and 255 empty bins (assuming
8-bit quantization). Are we then willing to say that our best estimate for the population
distribution is a spike at the observed gray level and zero probability of any other value?
No, we would wish to be more conservative, even if we were not assuming an underlying
Gaussian model.

QOur intuition serves us well here. Bayes showed in 1763 that the a posteriori probability
of a given multinomial bin-generating probability, given an observed histogram, has a beta
distribution, which is a continuous distribution resembling a skewed binomial [Jaynes 83].
The mean, or expectation, of this distribution is [Abramowitz 64, p. 930]

observed bin count + 1

number of bins + number of samples

Using this as our Pr(g|w;) has the effect of smoothing the population histogram estimate
slightly by adding a fractional count to each bin. This permits us to compute our similarity
measure even for bins that are to be empty in all prototype histograms.

The similarity function is now optimal for multinomial distributions, but not for Gaus-
sian mixture densities. It fails to allow either for the strong correlation between nearby
bin counts that is due to the component densities or for the exponential decrease in bin
frequency as a gray level is chosen farther from any histogram peak. The first effect is
particularly noticeable when the training data contain regularly spaced empty bins result-
ing from a sticky quantizer bit or from contrast stretching that introduced a picket-fence
envelope. While we can imagine separating two textures by their differing picket-fence
characteristics (i.e., by trivial differences in gray levels), this is not the type of behavior
we want to build into our image segmenter,

The solution, short of actually finding the component Gaussian densities, is simply



-to smooth the histograms. The SLICE program uses a binomial kernel (this is the best
discrete approximation to a Gaussian) with a standard deviation of 1, 3, or 5 pixels.
Histogram counts are scaled by 1000 so that fractional bin counts can be represented; this
scaling must be compensated for when computing the similarity transform.

The above smoothing extends each tail of a histogram peak for a dozen pixels or so,
then drops to zero. The multinomial bin correction that is subsequently applied will lift
this slightly above zero, but by an amount that does not vary with distance from the
histogram peak. This causes undesirable behavior of the similarity transform for gray
levels near the ends of typical histograms. Consider the case of a very sharp Gaussian
peak for our positive exemplar and a broad peak or mixture density for our negative
one. Further assume that the positive-exemplar histogram contains only a few hundred
pixels and that our negative exemplar is based on a very large sample, typically the entire
image we wish to segment. We would expect that image pixels far from the positive
exemplar peak would have very low similarity to that texture type because the associated
Gaussian distribution would have a very sharp exponential decay. Instead we compute a
high similarity because the multinomital correction for a histogram with few counts is a
much larger number than that for a histogram with many.

This leads to one more adjustment, a factor that provides exponential {i.e., Gaussian)
decay in the multinornial correction as we select bins farther from the nearest or broadest
peak in a histogram. There is no need to be precise here, so we can use an approximation
based on the distance to the lowest or highest count in the smoothed histogram. Only the
multinomial correction is applied for gray levels that are between these two limits. For
pixels outside the observed sample range, the 1 in the multinomial correction is replaced
by exp(—%ﬂ‘i),_ where d is the distance to the nearest bin in the observed range and w is
the number of bins in that range.

6. Goal-Directed Segmentation

We now have a rapid method of computing the similarity of an observed gray level in an
image band to a set of positive exemplar textures {or target signatures) with respect to a
set of negative exemplar textures. We can apply this function efficiently by precomputing
the similarity measure for every possible texture-band gray level and then looking up each
image pixel’s value in the resulting table of values. We shall usually have a particular
texture or target signature as a positive exemplar and shall use the full image (or region)
histogram as a negative one. (This implicit inclusion of the texture we are seeking in the
negative-exemplar histogram will not cause problems unless it is a major component of
that histogram. If it is, we might first suppress that component of the negative-exemplar
histogram by subtracting a multiple of the positive-exemplar histogram. The SLICE
program does not yet include such a correction procedure.)

Qur problem, then, is to select a similarity threshold that will separate all (or at least
most) of the instances of our target texture from instances of all other textures. If multi-
ple similarity bands are available, we should either select the best band for our threshold
segmentation or combine the information in all the bands. This section describes a seg-
mentation method capable of selecting the best similarity band for extracting examples
of the target texture and of recognizing those cases in which no satisfactory threshold can
be found. The next section will discuss other methods of combining information from



‘multiple similarity bands.

For any texture band, the computed similarity value for each pixel should ideally
be near 1.0 for the texture we are seeking and near 0.0 for the textures specified as
negative training examples. The actual separation for any real data band will be less, and
some texture bands may fail to discriminate the training textures at all, but a decision
threshold at 0.5 should separate our positive and negative training textures if they are
indeed discriminable. Decision thresholds above or below 0.5 could also be chosen; this
is equivalent to adjusting the a priori source-class probabilities, Pr(w) and Pr{¢), that
are implicit in the similarity transform. {We can no longer second-guess the relative
proportions of the population probabilities, Pr{w;} and Pr(¢;), within the source class
probabilities. Such fine control is not needed, however, particularly since we rarely require
multiple positive or negative exemplars.)

“Unexpected” or unmodeled textures in the image should have similarity values in be-
tween the extremes for the training textures. The [eight-bit| histogram of a similarity band
typically has a very large peak at the low-similarity end {representing image gray levels
that were cornmon in the negative-exemplar textures) and a spread of higher-similarity
spikes that look rather uniformly distributed. Smoothing the histogram (with a Gaussian
kernel of standard deviation 5 or less) typically reveals that this high-similarity energy
consists of a few Gaussian clusters representing image regions that are fairly similar to
the positive exemplar.

Segmenting this smoothed histogram is usually quite easy. The SLICE program cur-
rently uses a version of the PHOENIX histogram-based segmentation algorithm (docu-
mented in Appendix A) to find suitable thresholds. We may want to select just the peak
of values most similar to the training texture, although thresholding anywhere above the
large peak of least-similar values will generally produce a good spatial segmentation of
the image. We may also select multiple thresholds that will isclate other peaks in the
histogram and thus extract image regions with other textures as well. It is this capability
that makes SLICE a segmentation algorithm rather than just a classification algorithm.

The above procedure works if it is possible to find even one peak in one histogram that
is reasonably well separated from other peaks. In practice, there can be as much as a 25%
overlap between two Gaussian peaks and the segmenter will still find reasonable subregions
in the image. There will be times, of course, when the histogram-segmentation algorithm
fails to find any segmentable peaks in the similarity-band histogram, particularly when
we are trying to segment a whole black-and-white image or a low-resolution texture data
band. The segmenter will find that a region is uniform and unsegmentable, but higher-
level knowledge may suggest that this is false. The current SLICE program is not able to
proceed automatically in such cases, but any of the following techniques could be invoked:

» Try again with relaxed parameters for the peak-finding heuristics. The SLICE pro-
gram currently uses the PHOENIX histogram-partitioning heuristics with the “mod-
erate” parameter settings developed during the SRI evaluation of that package for
the DARPA/DMA Image Understanding Testbed. These smoothing parameters
and heuristic criteria could be successively weakened until peaks are found in the
histogram.

» Compute additional data-band transformations such as pairwise ratios or combina-
tions of existing data bands. Any oblique cut through the multidimensional his-



togram space is likely to resolve at least one histogram peak. Computation of such
a data band and histogram does not take long, particularly if only a small region is
involved.

e Compute a multidimensional histogram from multiple data bands and apply cluster
analysis techniques to find discriminable subpopulations. Combining two bands in
this way produces a two-dimensional histogram that can be analyzed by means of
image partitioning techniques [Nagin 77, 78]. The SLICE system itself might be
used to find populated areas of the bivariate histogram.

» Threshold the image region at arbitrary levels, e.g., at histogram quartiles or deciles,
and use spatial analysis (including noise suppression) to recover subregions that can
later be remerged or edited. This option is available in the SLICE program and
works surprisingly well.

e Partition the region at arbitrary spatial boundaries, segment the pieces, and then re-
merge or edit subregions along the boundaries [Robertson 73, Horowitz 74, Price 76].

e Switch to a different histogram-segmentation method, such as minimal-spanning-tree
analysis or relaxation-based peak sharpening [Bhanu 82].

e Switch to an entirely different segmentation approach, e.g., region growing from
homogeneous seed areas within the region.

Any of these methods, and no doubt others, will partition the image into regions containing
fewer homogeneous pixel populations. Once partitioning is started, subregions that are
thernselves composite can usually be segmented with ease.

Once distinct histogram peaks have been found, the segmentation algorithm finds
corresponding regions in the image by simple threshold segmentation and connected-
component extraction. It then computes a quality score for the spatial segmentation
based on the percentage of small “noise regions” produced. This quality score can be
used to select the best of several competing similarity-band segmentations. Better quality
scores could be computed from region shapes and other high-level or goal-directed criteria.

The current SLICE program includes an optional screening of extracted regions based
on spatial adjacency. Frequently the user wishes to “grow” an identified image region
{e.g., one that he has traced with a pointing device) instead of finding all other similar
pixel patches in the image. After connected-component extraction, the SLICE program
can suppress any region that is not touching or nearly touching the initial prototype.
Connected components are again extracted and the analysis proceeds. The final step in
the growing process is to merge the regions found with the original training region.

7. Multiband Similarity: Putting It All Together

The previous section described a method for finding image regions corresponding to
peaks in a similarity-band histogram. The implemented segmentation algorithm is able
to select the best of several competing similarity bands by comparing the identified his-
togram peaks and quality of spatial segmentation produced by each set of similarity-band
thresholds. This approach is typically useful in cueing applications when searching a scene
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“for textures that might differ considerably from stored prototypes. Using this technique, a
target region distinguishable in even one data band can be segmented from its background
and passed up to a higher-level reasoning system for confirmation. The method also works
well with multiple data bands containing essentially the same information, since slight dif-
ferences in the information content might lead to better segmentation in one band than
in the others. _

Another approach, also available in the current SLICE program, is to combine the
similarity bands computed from different luminance or texture bands into a single overall
similarity band. This is appropriate when we are very sure that our prototypes are rep-
resentative, as when we are trying to find a homogeneous texture region around a traced
seed region. Under these conditions we can assume that all instances of the target texture
will look very similar to the training texture in all transformed bands—if a subregion
differs significantly in even a single band it cannot be from the target population.

We might use factor analysis or discriminant analysis to devise an optimum weighting
function for combining the similarity bands. Such a function would no doubt be task-
dependent and image-dependent, making it very difficult to assemble sufficient training
data. A simpler solution is to construct the composite similarity band from the pixel-
by-pixel minima of the component similarities. This combining function is often used in
fuzzy-set theory. It correctly reflects the assumption that target textures should behave
just like the prototype texture under any transformation, but has the negative effect that
we cannot recover from a prototype that is unrepresentative in even a single data band.

In practice, the use of similarity minima works quite well for region growing. When
combined with spatial analysis and noise cleaning it results in either a reasonable seg-
mentation or a failure to segment at all. Other combining functions might work better in
particular cases, however. Higher-level guidance based on preliminary segmentation and
analysis of each similarity band could be used to choose combining functions intermediate
between the first all-or-nothing approach and the second pixel-by-pixel minima approach
[Salton 83, Rauch 84|.

One of the consequences of the SLICE similarity band computation is that the in-
clusion of additional similarity bands in a composite should never degrade performance
(other than taking longer to compute). If we have truly representative prototypes, any
histogram-based transformation will either help discriminate the positive training classes
from the negative training class or it will fail to do so. If it discriminates them partially,
any reasonable combining function will either make use of the information or, at worst,
ignore it; if it does not discriminate them, the corresponding similarity band will be es-
sentially constant and will do no harm. (The SLICE program currently tests for such
useless similarity transforms and does not bother to compute the similarity band.) The
SLICE similarity-transform approach thus has the advantage that it may fail to provide
information but will seldom produce misinformation.

8. Examples: The Proof of the Pudding

We shall now examine the performance of the SLICE algorithm on a particular aerial
image analysis task. The processing sequence will demonstrate both the advantages and
the disadvantages of this approach. Simple ways of improving the demonstrated perfor-
mance will also be discussed.
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Figure 2: Aerial Image with Positive and |
Negative Training Regions

Figure 2 is a black-and-white image of a residential area near Page Mill Road in Palo
Alto, California. The image has not been normalized or otherwise preprocessed. It shows
trees, roads, fields, buildings, swimming pools, and a few cars. Shadows are cast both by
the buildings and by the trees, although the resolution is such that tree shadows are very
difficult to discern. A full parse of the scene would detect and identify all of these entities.
Qur concern here will be the extraction of all the tree regions, perhaps as a preliminary
to extracting other objects in the scene. We shall first trace the process of “growing” tree
regions from user-selected examples and shall then examine the output of a more general
“finding” or cueing algorithm.

Extraction of the trees in this image by interactive threshold segmentation is not
difficult. The trees (or perhaps bushes) are distinguishable by their gray-level signatures
in the original image. An image-understanding system would not know this a priori,
however, but would have to extract and identify at least some of the trees and then
estimate whether it could extract the rest. The system could search for good tree regions
by experimentation with different thresholds [Selfridge 82|, but the methods presented in
this paper are more efficient.

Trees presumably have distinctive texture signatures in addition to their gray-level
signatures. Figure 3 shows four texture bands selected from the texture energy set. These
were computed with 5 x 5 filter masks and 15 x 15 “absolute average” summations. (At
this image resolution, the 3 x 3 filter set would probably have worked better.) Each
texture band highlights different characteristics of the original image. The four texture
bands used here are the same ones selected in the development of the texture enmergy
measures [Laws 80|, although there is little reason to believe that this is the best subset
or even an adequate subset for image analysis. The selected filters respond primarily
to horizontal edges, high-frequency variation, medium-frequency diagonal structure, and
narrow or high-frequency vertical structure. The data bands have been normalized for

image contrast, but pairs have not been combined to form orientation-independent texture
bands.

Goal-independent analysis of the original image, using the PHOENIX segmentation
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-algorithm (and skillful setting of its numerous parameters), leads to isolation of most trees

in the scene. These regions are not the first to be reported by the segmenter, however,
nor are they the last. The user or high-level control program must somehow select the
tree regions from among the hundreds of reported regions. This is made more difficult
by the fact that most of the scene is very poorly segmented by the PHOENIX algorithm,
with region boundaries crossing homogeneous fields and with parts of house roofs cut off
and grouped with surrounding fields. Adding computed texture bands to the original
black-and-white band degrades performance: areas around building edges are identified
as homogeneous regions and several scattered patterns of trees interspersed with grass are
also extracted as regions. (The latter effect is useful, but not as useful here as finding the
individual trees.)

Goal-driven segmentation with the SLICE algorithm begins with the selection of train-
ing areas. A sophisticated system might have adequate tree templates stored in its knowl-
edge base. Here we depend on the user to select representative training regions. Large
samples work better than small ones, but we will demonstrate the technique with the two
small training areas in Figure 2. A negative training region containing a strong shadow
and a mixture of other scene textures is also shown; the remainder of the image cutside
the three traced areas will be used as a second negative training region.

The two positive training regions were carefully selected. The upper-right region is a
nearly minimal sample such that the SLICE program’s “grow” command will extract the
entire clump of trees extending from the upper-right corner diagonally downward toward
the boftom edge of the second training region. The second region is also a nearly minimal
sample such that the “grow” command will extract all tree clumps touching the region.
Rather than witness these feats, we will now examine performance when both regions are
sought simultanecusly and the upper negative training example is also specified.

Figure 4(a) shows the histograms of the training regions together with the histogram
of the remainder of the image. The two similar histograms at the top of Figure 4(a)
correspond to the two user-traced training regions containing trees. The bottom-left
histogram corresponds to the negative training region; it has three peaks corresponding to
a shadow, the house roof plus driveway, and the lawn and car. The bottom-right histogram
for the rest of the image (also used as a negative training example) contains some dark
tree and shadow pixels and many light pixels from other scene components.

Figure 4(b) shows the resultant gray-level similarity transform for this black-and-
white image band. Similarity is highest for those pixels corresponding to trees, despite
the negative effect of tree regions in the whole-image histogram. The similarity transform
shows a very slight dip for shadow pixels and a much stronger dip in the house roof interval.
The least-similar gray levels are those occurring in the image but not in either positive
training region. The similarity function increases again for very bright pixels: these are
absent in all image regions and hence need not concern us.

Applying this transformation to the original image produces the similarity data band
in Figure 4(c). Trees, shadows, and a very small number of other scene objects have
been highlighted. We can easily extract trees from this transformed band, and such a
segmentation will be presented in Figure 8. For now, let us continue trying to “grow” our
training regions using multiband similarity.

The SLICE program is capable of using any number of texture bands as additional
inputs. For demonstration purposes, we shall limit it to just the band of Figure 3(b). This
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Figure 6: Merged Similarity-Band Histogram

band tends to show trees as dark regions, although the effect is not strong. Any of the
other texture bands might perform as well or better.

Figure 5(a) shows the two positive training histograms (top) and two negative training
histograms (bottom) for this band. Note how strongly the histogram on the bottom left
matches that of the positive training areas. Use of this negative training example actually
degrades segmenter performance in this case, albeit only slightly. (In other situations
the “caution” introduced by this overlap might prevent the segmenter from making bad
decisions.) We could reduce the degradation by giving the negative example less weight
than the histogram of the area to be segmented, but the knowledge-based mechanisms
needed to make such decisions have not been included in the SLICE program.

Figure 5(b) shows the similarity transform computed from the training histogram.
It shows a preference for dark pixels, but is not very specific. This leads to the texture-
similarity band of Figure 5(c), which we can see will not lead to a good segmentation of the
image. The segmentation program has no such perception, however, and must somehow
determine that it should reject most of the “information” in this computed band.

The method of combining similarity functions that we will use here is to take the
pixel-by-pixel minimum of all similarity bands. This combined transform function can be
computed from the individual similarity transformations rather than from the similarity
data bands, thus saving considerable computation. The result of applying this combined
similarity transformation to the original image may be seen in Figure 7(a). It is similar to
the similarity band for the black-and-white data band, although more intermediate gray
levels are present.

Figure 6 shows both the smoothed and the unsmoothed histograms of the merged
similarity band. There are several clusters in this one-dimensional space, and any to the
right of the main histogram peak could represent the trees we are seeking. An intelligent
system would investigate several thresholds or would use several thresholds simultaneously.
The current SLICE algorithm simply chooses the threshold that best survives its screening
heuristics—in this case perhaps a rather poor choice. Figure 7(b) shows the spatial result
of applying this threshold. The trees are indeed found, but so are driveways, road patches,
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(b) Region Outlines

Figure 8: Regions Found by Similarity-Band Selection

and other dark image regions. There has also been a blurring effect because of the 15 x 15
window used to compute the texture energy band.

Our current task is to “grow” the original sample regions to their full image extent,
rather than find more distant matching regions. A simple spatial analysis can thus be
employed to eliminate all regions not touching the original training regions. (The current
criterion is that the rectangle enclosing a candidate region must corne within one pixel of
touching a rectangle enclosing one of the positive training regions. This allows for small
breaks in our extraction of a scene object and permits a higher-level process to determine
whether nearby regions should be merged or discarded.} Candidate regions smaller than
some threshold, here set at five pixels, are also discarded as probable noise regions.

Figures T(c) and 7(d) show the result of this spatial screening. The segmenter has
done a good job of expanding the initial sample regions, although the lower-left region
has absorbed part of an adjacent house roof. The upper-right tree clump has been found,
but includes pixels from the surrounding field that would not have been included if the
inherently blurred texture band had not been used (or if the final similarity histogram
had been thresholded at a higher gray level). Two additional large regions, both contain-
ing trees, are found because of the gray-level and spatial interactions of the two sample
regions. They would not have been retained if the two training regions had been grown
independently. :

This concludes the presentation of the goal-directed region-growing technique used in
the SLICE program. We have seen how the algorithm is able to overcome difficulties such
as small positive training regions; negative training regions that are unrepresentative (i.e.,
badly weighted) and include the very pixels we are trying to find; blurred, poorly chosen,
or uninformative texture data bands; ad hoc similarity combining functions; and poorly
chosen thresholds. As knowledge-based techniques are developed and refined, some of
these difficulties will be eliminated and performance enhanced commensurately.

A final example of the power of the SLICE goal-directed approach may be observed
in Figure 8, which shows the effect of the SLICE program’s “find” command when the
same training regions and texture band are employed. This algorithm differs from region
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.growing only in the similarity combining function and spatial screening. Instead of com-
bining the computed similarity bands, each is analyzed separately and the one with the
least “noise area” is selected. The texture data band is thus rejected and only the original
black-and-white image is employed. Shadows and a few other undesired dark areas are
found, but essentially every tree over five pixels in area is identified. This leaves very little
work for a higher-level verification process to perform.

9, Conclisions

The SLICE segmentation system is one of several existing systems for segmenting
digital images recursively. Its major contributions are computation of a nearly optimal
texture-similarity function and integration of this approach with a robust segmentation
system to permit both goal-directed and goal-independent textured-image partitioning.
Some of the advantages and disadvantages of the SLICE algorithm are listed below.

e The SLICE goal-directed segmentation algorithm uses multispectral or “multitextu-
ral” input to extract precisely those scene objects of most interest. If it fails, repeated
attempts with relaxed constraints may locate candidate regions. If it succeeds, it
generally produces high-quality regions that require little postediting. Provision for
negative training examples permits easily confused material types to be separated
early in the analysis process.

e SLICE, like other region-based methods, always yields closed region boundaries.
This is not true of edge-based feature extraction methods, with the possible exception
of boundary following and zero-crossing detection. Closed boundaries are not needed
for all image-analysis tasks, but they do simplify many approaches. In particular,
the resulting regions provide meaningful entities for a human or high-level control
system to reason about and manipulate.

e SLICE is a hierarchical or recursive segmenter, which means that even a partial
segmentation may be useful. This can save a great deal of computation if efforts
are concentrated on image regions in which further segmentation is critical. If a full
goal-independent segmentation is desired, however, other methods of segmenting
may be more economical.

» SLICE is relatively insensitive to noise because noise tends to average out in the re-
gion histograms used to select thresholds. This contrasts with edge-based methods,
as the local analysis they require can be highly perturbed by noise. The SLICE pro-
gram also eliminates small noise patches by merging them with surrounding regions
during connected-component extraction, but a knowledge-based decision function
for identifying noise patches could improve this process.

e SLICE currently has no notion of boundary straightness or smoothness. This may be
either good or bad, depending on the scene characteristics and the analysis task. It
easily extracts large homogeneous regions that may be adjacent to detailed, irregular
regions (e.g., a lake adjacent to a dock area or the sky over a complex skyline);
such tasks can be difficult for edge-based segmenters. Boundary aesthetics and
other semantic criteria can be incorporated as part of either an editing process or
knowledge-based control structure.
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e Region-based segmenters may fail to detect even long and highly visible boundaries
between two large, similar regions if the region textures cause their histograms to
overlap. The use of texture bands may reduce this problem because the bound-
ary region itself forms a distinctive texture. Hypothesis-driven edge-based methods
(e.g., construction of specific-orientation edge detectors optimized for the textures
on either side) may be required to confirm such boundaries.

e SLICE tends to miss small regions within large ones because they contribute so little
to the composite histogram. It is thus poorly suited to goal-independent detection
of vehicles and small buildings in aerial scenes, although the use of multiple tex-
ture bands alleviates this deficiency. Goal-dependent selection of search areas and
texture-similarity transforms will help to locate small objects even against back-
grounds of similar gray level.

e SLICE also tends to misplace the boundary between a large region and a small one,
thus obscuring roads, rivers, and other thin regions. Boundaries found by edge-based
methods are less affected by distant scene properties, but work poorly if not adapted
to the statistics of the regions being discriminated. An edge-based postediting of
the region boundaries found by SLICE may combine the best of both approaches.

e SLICE requires multispectral input or multiple texture transforms for effective oper-
ation. Edge-based and valley-seeking or spanning-tree techniques are better adapted
to operation in a single data band, and thus require less computer memory and pos-
sibly less processing time.

Selection of a segmentation algorithm should depend on the task to be performed.
The SLICE segmentation system is a convenient testbed for integrating diverse feature-
extraction techniques and experimenting with knowledge-based control structures.
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Appendices

A. The PHOENIX Segmentation Algorithm

The SLICE segmentation algorithm incorporates the PHOENIX color segmentation
algorithm developed at Carnegie-Mellon University [Shafer 82]|. The PHOENIX algorithm
is a sophisticated method of hierarchical region extraction based on region statistics and
user-specified parameters. It does not use explicit knowledge about the types of data bands
it is given nor about the scene objects being sought. This section describes the operation of
the PHOENIX algorithm. The reader wishing further description and details of operation
is referred to the SRI Image Understanding Testbed evaluation of the PHOENIX system
[Laws 82]. :

Each object or object part in a scene is assumed to form a nearly uniform patch in
the image, with a noisy Gaussian peak in any single-band histogram. Decomposing a
function into Gaussian peaks is known as the mixture density problem [Wolfe 70| and
is important in information theory, statistics, chemistry, and other fields. Very little of
this theory has been applied to image processing [Chow 70, Rosenfeld 76, Postaire 81].
The PHOENIX/SLICE algorithm segments mixture densities by identifying the most ob-
vious thresholds in any of the data bands, then using spatial-analysis “look-ahead” before
confirming a candidate threshold. The algorithm does make slight errors in threshold
placement, however, leading to the breakup of some small regions and a shifting of the
boundaries of others. ' ‘

Ohlander and Price used a hierarchy of heuristic rules for selecting the most prominent
peak within a set of histograms [Ohlander 78, Price 79, Nevatia 82]. PHOENIX uses
similar Heuristics, but concentrates on the valleys (i.e., local minima) in the histogram
set. Usually a single valley, resulting in one threshold and two intervals, is selected for
each feature. Spatial analysis is then employed to select the best threshold/data band
combination. Using only one threshold per pass reduces the chance of segmentation errors,
although it does increase the number of passes required.

Histograms can be treated as one-dimensional images and can be segmented by almost
any image segmentation method. The PHOENIX histogram-analysis component uses an
intervel-merging strategy. Each single-band histogram is first smoothed with a binomial
or Gaussian smoothing kernel having a standard deviation gasmooth— typically 3, and
ranging from 5 for coarse segmentation down to 2 for more detailed segmentation. {The
original PHOENIX algorithm used a simpler unweighted moving average.) The histogram
is then broken into intervals in such a manner that each begins just to the right of a valley
(i.e., at the next higher intensity), contains a peak, and ends with the next valley. A
valley is considered to be the right shoulder of its left interval and the left shoulder of its
right interval. The leftmost and rightmost intervals always have exterior shoulders of zero
height.

A series of heuristics is then applied to screen out noise peaks. Each test is applied to
all the intervals in the histogram. When an interval is eliminated, it is merged with the
neighbor sharing the higher of its two shoulders. The screening test is then applied again
to the merged interval. {Previous tests are not reapplied.)
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Peak-to-shoulder ratio is tested first. An interval is retained only if the ratio of peak
height to the higher of its two shoulders, expressed as a percentage, is at least as great
as the user-supplied maxmin parameter—typically 160%, and ranging from 200% for
“strict” screening down to 130% for “mild” screening.

Peak area is then compared with an absolute threshold, absarea, and with a relative
threshold, relarea, representing a percentage of the total histogram (or region) area. Only
peaks larger than these thresholds are retained. Absarea is typically 30 pixels, ranging
from 100 pixels down to 5 pixels; relarea is typically 2%, ranging from 10% down to 1%.

The intervals surviving to this point should be reasonable candidates, and it is fairly
safe to use global histogram descriptors in the test conditions. The second-highest peak
is now found, and those peaks whose height is less than a percentage, height, of it are
merged. The lowest interior valley is then found, and any interval whose right shoulder
is more than absmin times that valley height is merged with its right neighbor. {The
parameter appears to be misnamed, since the criterion is relative rather than absolute.)
Typical values of these parameters are 20% and 10 pixel counts, ranging from 50% to 10%
and 2 counts to 30 counts.

A final screening is performed to reduce the interval set to intsmax intervals. This is
done by repeatedly merging regions with low peak-to-shoulder ratios until only intsmax—
1 valleys remain. Intsmax is typically set to 2 to force the highest-quality segmentation
during each pass, although higher values could save considerable computation time.

A score is also computed for each interval set as a whole {in relation to the interval
sets for other data bands). This score is the maximum over all intervals of the function

1000 peak height — hlg'her shoulder
peak height

This formula assigns the maximum score to an interval set containing a peak with shoulders
of zero height. Interval sets with scores less than absscore or less than relscore percent
of the best score for all data bands are rejected. Absscore is typically 700, ranging from
925 down to 600; relscore is typically 80%, ranging from 95% down to 65%.

If more than isetsmax data bands are still candidates for segmentation, the excess
ones with the lowest scores are now dropped. This parameter is typically 3 and ranges
from 2 to 5. Remaining data bands and interval sets are passed to the spatial-analysis
subsystem.

Histogram segmentation 18 a heuristic technique that sometimes misses good thresh-
olds and sometimes chooses bad ones. Some protection is provided by examining seg-
mentations of several different data bands and chooesing the best. Regions smaller than
the noise threshold are merged back into their parent regions and bands producing re-
gion segmentations with more than retain percent of their area so merged are rejected.
These parameters are typically 10 pixels ranging from 50 pixels down to 5 pixels, and and
20% ranging from 4% to 40%. The remaining segmentation producing the lowest noise
percentage is then selected and instantiated in the data base. All resulting subregions
are scheduled for further attempted segmentation provided that their areas are at least
splitmin pixels—typically 40 pixels and ranging from 200 pixels down to 20 pixels.

No single threshold is going to result in perfect segmentation when the histogram peaks
overlap. We might instead use two thresholds—one low enough to catch all of the higher
peak and another high enough to catch all of the lower peak—then ascertain from the
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-image which threshold is correct for extracting each subregion. In practice, most of the
small noise patches that result from a slightly offset threshold are easy to identify and
absorb into the surrounding subregions. The noise-cleaning process leaves only the exact
placements of the subregion boundaries in doubt, and these can be better determined in
a postediting of adjacent region pairs than through clever partioning of a multiregional
histogram.
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B. Spectral Transforms for Color Segmentation

Color bands are needed when two regions to be distinguished have similar texture
(including intensity), but different hue or saturation. Transformations of these bands can
sometimes be used to separate pixel clusters that project to overlapping or confounded
histogram peaks in the original spectral data bands. Similar band combinations may be
useful for segmenting texture bands or other nonspectral data bands.

Color transformations are not currently implemented as part of the SLICE program,
but transformed data bands computed off-line can be used to improve its operation. The
segmentation algorithm currently makes no distinction between color bands and other
types of data bands, although the associated display routines do make such a distinction.

Color bands for image processing research are typically generated by scanning a color
photograph through filters (e.g., Wratten filters 25, 47B, and 58) to get red, green, and blue
(RGB) data bands. Real-time systems often use an electronic color camera to generate
equivalent Y /Q* bands that correspond roughly to perceptual brightness, cyan vs. orange,
and magenta vs. green. The following discussion assumes that the primary input is in
RG B coordinates, but converting to or from other color coordinates is fairly easy.

Each color system constitutes a three-dimensional chromatic space that can express
most of the colors perceived by humans. (The detailed spectrum that astronomers and
other physical scientists depend upon has been lost, just as it is in the human visual sys-
tem.) A few purples and highly saturated colors are not precisely representable and the
colors recorded with different films or cameras may differ, but the tricomponent represen-
tation is adequate for most purposes.

Typical quantization is eight bits per color axis, or 16.8 million cells for an entire three-
dimensional color histogram. Cluster analysis in such a space is not attractive, although
methods of multidimensional pattern recognition are available. The SLICE package in-
stead uses an adaptation of a one-dimensional histogram partitioning method implemented
in the CMU PHOENIX program [Tomita 73, Tsuji 73, Ohlander 75, Shafer 82, Laws 82].

Any one-dimensional histogram is equivalent to a projection of the three-dimensional
data onto a line {(or curve) through the chromatic space. If the scene contains many
regions, their histogram peaks are likely to overlap and obscure any useful details in the
composite histogram. The overlap is different for projections at different angles, and it is
often possible to isolate peaks from some of the regions by using many projections.

Ohlander used RGB, HSD®, and Y IQ projections, but many other color coordinate
transformations are possible. The HSD coordinates were introduced by Tenenbaum et al.

Y IQ is the National Television Systems Committee (NTSC) color coordinate system. The perceptual
brightness, or ¥, chromaticity band takes its name from the XY Z chromatic primary system of the Com-
mission Internationale de ’Eclairage. I and @ are the NTSC in-phase and quadrafure signal components.

5The HS D, or hne—saturation-intensity, color coordinate system is also known as the HSI or I HS system.
The symbol D is used here for intensity to avoid confusion with the ¥ I'Q system. It comes from densify,
a measure of the amount of silver deposited at a given point in a photographic negative.
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-[Tenenbaurn 74a, 74b] to mimic human color perception. They are

(R-G)+(R-B)
2v/[R-G)(R-G)+ (R-B)(G - B)

H = arccos

_ min(R, G, B)
S = m-(1-3 R+G+ B )
R+G+ B
D ( +3+ ) ,

where m is the maximum desired saturation value. Hue is normalized by subtracting it
from 27 if B > G; some care must be taken in rounding the values near 2 if the number
is quantized. Note that these formulas contain singularities that are due to division by
zero, and thus exhibit unstable segmentation behavior near the D axis.

The Y IQ coordinates used in color television transmission are

Y = 0.509R-+ 1.000G + 0.194B8
I = 1.000R - 0.460G — 0.540B+ M
Q = 0.403R—1.000G + 0.597B + M :

where M is the highest possible intensity value in the original RG B features, typically 255.
These formulas have been linearly scaled to maintain quantization accuracy (via the unit
coefficient). M is added simply for convenience in digital representation. {The Q feature
can be negated before adding M to better match the green gun on a color monitor.)

Kender analyzed the color transformations used by Tenenbaum and Ohlander and
showed that inherent singularities and quantization effects were capable of introducing
false histogram peaks and valleys [Kender 76, 77]. This effect is particularly noticeable in
the hue feature, but also affects saturation and other normalized chromaticity coordinates.
He recommended that saturation be ignored in regions of low luminance, with hue ignored
in low saturation as well. The ¥ IQ transform was found to entail fewer problems, although
its usefulness in segmentation was not evaluated. Kender alsoc proposed an improved
computational algorithm for hue.

Ohta et al. have further investigated color transforms for recursive segmentation
[Ohta 80a, 80b]. They computed color histograms by using the Karhunen-Loeve color
transform—an expensive method because the transform is different for each region. Ohta
found that the principal transform axes typically clustered around

I. = R-B
I = 2R—-(G+B)

and recommended that these features be employed. (The second and third features may
be negative, so that either an offset becomes necessary or the segmentation code must be
able to handle negative pixel values.)

Ohta’s transform is similar to the Y IQ system, as well as to the opponent-color (i.e.,
red-green and blue-yellow) representation recommended by several authors [Sloan 75, Na-
gin 78]. The transform is linear and hence avoids the instabilities that Kender found in
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‘saturation, hue, and normalized chromaticity coordinates. Nagin expressed some theoret-
ical reservations about his own opponent features, but concluded that they “consistently
provided more discrimination than the original RG B data.”

HSD and Y IQ color transformations were used in SRI's evaluation of the PHOENIX
color segmentation program [Laws 82]. Hue was mapped to the range 0 to 179, with red
at O (and 180), green at 60, and blue at 120. Achromatic pixels (i.e., black, gray, and
white) were mapped to 255; this seldom makes a difference since pixels with exactly equal
RGB components are exceedingly rare. A less exact test for achromaticity might work
better (or at least differently) for images with slight imbalances in their color strengths.

The I and @ color bands computed by Kender’s formulas should theoretically be
divided by two (and then shifted to a nonnegative range) if they are to be stored in 8-bit
image planes. (The SLICE program can handle image data with other pixel sizes, but
eight bits is convenient and seems to offer a reasonable dynamic range.) Most of this range
1s wasted, however, unless I is stretched by a factor of two and @ by a factor of four prior
to quantization, with clipping of extreme values. This greatly increases the usefulness of
these bands for segmenting natural imagery, although it could fail for scenes that contain
large regions of saturated colors.

Hue was generally not only the most useful color band in the SRI evaluation, but also
the easiest to comprehend. The D and Y bands are essentially redundant; they do not
always segment identically, but the extra information is not worth the effort of computing
both. Segmentation on the RG B bands was almost as good but more difficult to explain;
the RG B bands were each nearly equivalent in segmenting power, and successive region
extractions seemed to jump randomly from one to another. (Differences in color are usually
correlated with disparities in brightness, so an object that appears red might actually be
segmented on a different color band by the PHOENIX/SLICE algorithm.) The S band
was somewhat less useful, although decisions based on it were easy to explain. I and Q
were the least useful data bands, although they might have been essential if some of the
other seven data bands had not been available.

Overall, the HSI color system seems easiest to use, although the other color systems
work well if explanations of each segmentation step are not needed. The RGB bands
are so similar to one another that the addition of a hue band can improve segmentation
greatly. Pixels containing blue mixed with red (i.e., purples and violets) are rare even
in hazy mountain scenes, so there is seldom a problem with peaks in the hue histogram
being split between the bottom and top portions of the scale. Saturation is more likely to
be the cause of such instabilities; dark or shadowed image regions sometimes transform
to very high saturation values, indicating that segmentation on luminance should be done
first or that the instability of saturation should be considered during noise cleaning and
other analyses.

Transformations of texture and other nonspectral data bands have not been evaluated,
but simple sums and differences of the bands are the most separated in a multidimensional
histogram space and are thus most likely to improve segmenter performance. Texture
bands can also be combined with spectral bands in this way.
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